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I.  INTRODUCTION AND SUMMARY OF THE RESEARCH PROGRAM 

rp = Appropriate 

Mean Radius at x 

liw Particle Surface 

Figure 1. The Pore Tree 

To properly describe coupled 
chemical reactions and gaseous 
diffusion in porous sorbent and 
catalyst grains, the "pore tree" was 
introduced by Simons and Finson 
(1979) and Simons (1982). The pore 
tree represents an isolated sub- 
structure, allowing diffusion into and 
out of porous media without 
permitting transport through the 
media. A pore size distribution was 
derived statistically and confirmed 
empirically for coal, coal char, 
sorbents, catalysts and kidney stones 
from both men and women. The 
pore tree was derived from the pore 
size distribution and allows the 
orderly migration of a reactant gas 
from the large pores to the small pores (Fig. 1).  A detailed description of the pore tree and 
the coupled transport and chemistry is given by Simons (1982, 1983a). The spatially 
dependent transport/reaction equations are solved for a single pore tree and then the total 
contribution of all trees (of all sizes) in the system is obtained by summing the contribution of 
each tree that reaches the exterior of the system. This is distinct from the "bulk" transport 
approach in which the transport equation for a single pore is integrated over all pores at a 
fixed point in space before integrating spatially. The "bulk" transport approach is invalid if 
the spatial gradients in the transport equations are implicit functions of pore size. One 
example of this implicit pore size dependence is that of the heterogeneous reactions within 
porous sorbents (Simons, 1988) and catalysts for which the pore tree structure/transport 
model was developed. A second example is that of coupled diffusion and remediation 
reactions in the immobile region of soil. 

In order to describe the subsurface transport of gas and water in soil, the dispersion of 
contaminants, and in-situ remediation of contaminated sites, the pore tree has been extended 
(Simons, 1996a) to simulate permeability and bulk transport. The interconnectivity of the pore 
structure is illustrated in Fig. 2 and is obtained via a statistical determination of the 
"branches" that are common to several trees to allow convection and bulk diffusion through 
the large scale (mobile) structure in addition to diffusion and coupled chemical reactions 
within the smaller scale (immobile) structure. The statistical analysis has determined that the 
probability of pore interconnectivity extends across the entire pore size range, with an 
increase in the probability accompanying a decreasing pore size. While permeability is 
dominated by the largest pores, it is also important to establish the level of convection and 
diffusion that is occurring at the intermediate scales in order to accurately relate large scale 
bulk transport, small scale diffusion and coupled chemical reactions. 



a) Pores Interconnected in Plane AA b) Pores Interconnected Out of Plane AA 
Figure 2.  Interconnectivity of the Pore Tree 

s 
u 
□ 
Z 
o 
Ü 

The permeability across a given 
plane is limited by the largest pores that are 
interconnected in that plane (Fig. 2a). The 
statistical analysis has determined that 
approximately one quarter of one percent of 
all large pores are interconnected. This 
establishes a very coarse grid for the 
permeability which leads to the 
measurement scale size errors illustrated in 
Fig. 3. The extended pore tree model has 
successfully explained the measurement 
errors in the permeability of soil due to the 
measurement scale size (Shouse, et.al., 
1994) which has indirectly confirmed the 
low probability of the interconnectivity. 

The bulk gaseous diffusivity across a 
given plane is shown to be limited by the 
interconnectivity of the smaller branches 
outside of that plane (Fig. 2b). These small 
pores may be saturated and gas diffusion is 
allowed only in pores whose radius is 
greater than that of the largest saturated 
pore (r9J. The gas diffusivity is shown to 
scale as (permeability)172/ r^. A comparison of the present theory to the diffusivity data of 
Washington et al., (1994) is illustrated in Fig. 4. The gas diffusivity data at approximately 
60% saturation verifies the permeability dependence and suggests a saturation radius of the 
order of 30 p.m. Sixty percent saturation at 30 p.m is consistent with the statistically derived 

SCALE  OF  MEASUREMENT  (m) 

Figure 3. Measurement Scale Errors 
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Figure 4. Bulk Difrusivity of a Partially Saturated Soil 

pore size distribution function. While the excellent agreement with the data does substantiate 
the present theory, the difrusivity in partially saturated soil is very sensitive to an unknown 
saturation radius. If bulk diffusivities are to be correlated with field data, such measurements 
should attempt to measure the saturation radius. 

The permeability and the bulk difrusivity have tested two extreme limits of the pore 
structure and pore interconnectivity concepts. Permeability is limited by the in plane 
interconnectivity (Fig. 2a) and bulk gaseous diffusion is limited by the out of plane (Fig. 2b) 
interconnectivity. Permeability is limited by the large pore interconnectivity and bulk diffusion 
is limited by the interconnectivity of the smaller pores. The apparent success of these 
concepts over a very broad pore size range suggests that the extended pore tree model will 
accurately describe the relationship between large scale convection and small scale diffusive 
transport. 

A preliminary step in this approach to relate convective and diffusive transport in 
various size pores is to describe the subscale convection responsible for hydrodynamic 
dispersion (Simons, 1996b). The velocity profile in interconnected pore space is illustrated in 
Fig. 5. The largest pores are not interconneced across the porous medium. Hence, the net 
velocity within the largest pores is zero. The smallest pores do not support a very large 
convective velocity. Thus, there is a relative maximum of the velocity at some intermediate 

pore size r^/y^ .  Clearly, the fluid in the pore of radius  r^/y7«  convects ahead of that 
in the pores of radius rx and r2. Consider flow in a saturated porous medium in which all fluid 
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Figure 5. Velocity in Pore Space Figure 6. Spatial Concentration Profile 
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Figure 7. Temporal Concentration Profile Figure 8. Temporal Concentration Data 

behind a fixed plane normal to the flow is suddenly injected with red dye.  If fluid velocity 
vm* is associated with pores rt* and r2* , all dyed fluid in pores whose radius is between rt* 
and r2* will translate with velocity equal to or greater than vm* and move to a corresponding 
location x* or greater. The corresponding concentration profile is illustrated in Fig. 6 where 
all red dye would have reached the location Eta = 1 were it not for the velocity variation 
within pore size. The "front" of the concentration profile has progressed 30% ahead of the 
mean while the slower fluid in the smaller pores has trailed considerable. If we were standing 
at the end of a porous flow tube, the concentration passing our location would exhibit a time 
dependence illustrated in Fig. 7. The faster fluid breaks through ahead of the mean flow 
while the fluid in the smaller pores is delayed. 

Data of Elrich, et al., (1966), as reported by Brusseau and Rao (1989), are illustrated 
in Fig. 8 and support the current theory of hydrodynamic dispersion. While the long "tail" of 
the concentration profile is generally attributed to nonequilibrium, the current pore structure 



model attributes it to the wide pore size distribution occurring in soil. The narrow pore size 
distributions occurring in laboratory "soil" will yield a much narrower concentration profile, 
i.e., less hydrodynamic dispersion. Future research will be directed toward 1), evaluating the 
hydrodynamic dispersion as a function of pore size range in the soil sample and 2), using this 
analytic pore structure/ pore transport model to help derive an analytic expression for 
hydrodynamic dispersion that replaces the Fickian process in the transport equations. 

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has 
utilized the interconnectivity of the pores to determine the distribution of the convection 
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the 
pore structure which does not contribute significantly to the bulk permeability but in which 
convection dominates diffusion. It is the balance of the sub-scale convection with the small 
scale diffusion that will control contaminant transport and in-situ remediation. The size 
distribution of the pores and grains, and the variations in fluid velocity within and between 
pores of different sizes is critical to interfacing the transport processes. A methodology has 
been developed to couple subscale diffusion, convection and chemical reactions to the 
macroscopic transport in order to accurately describe contaminant transport and in-situ 
remediation in Ground Water Simulation codes. 

A typical species transport equation in permeable soil is of the form: 

dc +-3c = D   &c_ + cM_ 
dt       dx       h dx2      M 

where c is the local species concentration, v is the mean convection velocity as determined 
by the local pressure gradient and permeability k, and Dh is the hydrodynamic dispersion. 
The dc/dt  term is the true unsteady term and the source and/or sink of species c due to 

chemical and/or physical processes within the subscale pore structure is written as cM/M 

where M/M represents a bulk rate (1/t) of production or consumption. The bulk rate M/M 
will be related to gradients of c on length scales of order millimeters within the subscale pore 
structure and cannot be expressed in terms of the dc/dx of the macroscopic transport grid. 

To describe the subscale chemical reactions and transport, a "grain" of soil of radius 
ag is isolated from the rest of the medium. The grain size will be chosen sufficiently small 
that diffusion and coupled chemical reactions will dominate the subscale transport. The pore 
tree was developed (Simons, 1982, 1983a,) to treat coupled chemical reactions and diffusion 
within immobile porous grains. Generic forms of the immobile solution are illustrated in 

Figure 9 where Rt represents the limit of kinetic control and Äj represents a coupled 
kinetic/diffusive solution in which the reaction on the walls of the pore establishes a species 
gradient which accelerates the molecular diffusion. The particular solution for contaminant 
transport and soil remediation will vary with the number of reactions and kinetic mechanisms 
but the generic form of the immobile solution will be similar to that illustrated in Fig. 9. 
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Figure 9. Coupling The Mobile and Immobile Solutions 

The reactant species must be supplied to the edge of the grain by subscale convection 
at a rate depicted by the permeability which is appropriate to the length scale ag. The mobile 

solution for M/M is developed in subsequent sections. It is shown that 

M _ tfPj-dpldx) 
M      768 n ß K2

0 

a   s R^a     {Connectivelimit) 

The mobile solution indicates that the convective limit increases with grain size while 
the immobile solution indicates that the diffusive limit decreases with increasing grain size. 
The comparison illustrated in Figure 9 suggests that for large grains, diffusion cannot keep up 
with convection while for small grains, convection cannot keep up with diffusion. The 
convective and diffusive limits are in balance if and only if 

where it has been noted that the solution cannot exceed the limit of kinetic control. 

The above expression for the bulk source and/or sink of species c due to chemical 
and/or physical processes within the subscale pore structure is incomplete without specific 

models for Äj and Äj in the immobile region. Future research will be directed toward 
developing a library of such models. The most basic processes of contaminant diffusion and 
adsorption are briefly described below. 



H.  ISOLATED PORE TREE: THE STRUCTURE 

Following the pore structure theory of Simons and Finson (1979) and Simons (1982), 
consider a spherical porous particle of radius a, containing pores of length lp and radius rp. 
The pore dimensions range from a microscale of the order of Ängstroms to a macroscale 
which is a significant fraction of the particle radius. The radius of the largest pore is denoted 
by r^ and is given by 

W=2ae*/3*. (1) 

where 6 is the total porosity of the particle and K0 is a constant of integration, approximately 
equal to five, which relates the pore length to its radius 

*, = V,/e* (2) 

The radius of the smallest pore is denoted by r,,^ and is given by 

raia=2QIVpssp (3) 

where ps is the density of the solid matrix, s„ is the specific internal surface area (several 
hundred m2/g), and 

The particle contains a continuous distribution of pore sizes from ^ to r^  . The 
number of pores within an arbitrary plane of cross-sectional area A and with radius between 
rp and rp +drp is denoted by g(r )Adr . The pore distribution function g(r' )is given by 

J(r,)=e/2*ßi>3 (5) 

where g(r■ ) indicates an average over all inclination angles between the axis of the pore and 
the normal to the plane. Due to the random orientation of the pores, the intersection of a 
circular cylinder with a plane is an ellipse of average area 27trp

2. Hence, the porosity is the 
2rcrp

2 moment of g(r) and the internal surface area is the 47trp moment of g(r ). 

The above expression for g(r ) was derived from statistical arguments and was 
subsequently validated for coal char through comparison of the predicted volume and surface 
area distributions with mercury intrusion data (Simons and Finson, 1979).  Mercury intrusion 
data generally demonstrate a linear increase in the intrusion volume with ln(rp).  It is the 
functional form of this relationship, 



Pore Volume « j rp g(rp)drp«kir (6) 
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that depicts the inverse cubic dependence of g(rp) on rp.   Mercury intrusion data has been 
used to validate this pore size distribution function for coal and char derived from that coal 
(Kothandaraman et.al., 1984), sorbents (Simons and Garman, 1986), catalysts, and even 
kidney stones from both men and women. There is, however, no such validation for soil or 
sediments available. 

The number of pores within the bulk volume V whose pore radius is between rp and 
rp+drp may be defined by Vf(rp)drp. The pore volume is expressed as the KTP\ moment of 

f(rp) and the internal surface area is the 27irplp moment of /(r ). The pore size distribution 

functions ( f(rp) and g(rp) ) are clearly not independent. The definitions of porosity and 

internal surface area infer that f(r) is related to g(r ) by 

g(rp)=f(rp)lp/2 (7) 

Equation (7) simply states that the probable number of pores intersecting an arbitrary plane 
increases with the length of the pore and with the density of pores. 

The length of a pore is determined by an arbitrary intersection with another pore and 
is expressed (Simons and Finson, 1979) as a collision integral over the pore distribution 
functions. The analysis suggests that lp , g(rp) and /(r ) are proportional to rp, l/rp

3 and 
l/rp

4 respectively. The constants of proportionality are obtained from integral constraints, i.e., 
the total porosity and internal surface area contained in the pore structure. The expression for 
f(rp) is given by 

/(>>) = —^—7 (8) 

where the constants were defined above. 

The pore volume distribution corresponding to these distribution functions is similar to 
that utilized in the random pore model (Gavalas, 1980 & 1981). However, the pore tree 
model and the random pore model differ dramatically in their choice of the pore aspect ratio 
(length to diameter) and its implications with respect to pore branching. The random pore 
model allows a single pore to connect two larger pores. This picture lends itself to the 
idealization of instantaneous mixing between the pores and requires that the pore aspect ratio 
be of the order of one hundred. The pore tree theory uses data for r^ to imply (via KJ that 



all pores possess an aspect ratio of the order of ten. Hence, small pores may connect to larger 
pores only on one end and all pores must branch from successively larger pores like a tree or 
river system. 

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a 
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by 
g(rt)4iia2drt where g(rt) is functionally identical to g(r). Each trunk of radius rt is 
associated with a specific tree-like structure. Let Nt be defined as the branch distribution 
function where Ntdrp is the number of pores of radius rp (within size range drp) in a tree 
whose trunk radius is rt. The total number of pores of radius rp in a sphere of radius a 

may be expressed as 4/3% a3f(rp)drp or, as the sum of all pores of radius rp contained 
within every tree in the porous sample, plus all pores of radius rp that are themselves the 
trunk of a tree. Hence, 

|™3/(/>) = fNtg(rt)4na2drt * 4na2g(rp) (9) 

where only trees with trunk radius greater than rp will contain a pore of radius rp. Using the 
previously derived expressions for r,^,  g(r )and f(rp), Eq.(9) is identically satisfied by 

*,=/>; do) 

The branch distribution function completely characterizes the pore tree. The internal 
surface area and pore volume associated with each pore tree are denoted by S^rJ and Vt(r,), 
respectively, and are expressed as the sum of the contributions from the trunk and that from 
the branches. 

St{rt)=2%rtlt+J2%rplpNtdrp (11) 

Vt(rt) = TirUt+l*r2
plpNtdTp (12) 

Using Eq.(10) for N„  St(r,) and Vt(r,) become 



St(rt)=2%rtlt 

( O 
\ min/ 

(1-6) (13) 

Ff(rf)=Kr,2/Jl+ln 
r. 

(14) 
min// 

where the (1-6) term in St has been included to account for pore combination (Simons, 
1979a). 

The surface area associated with the pore tree may be several orders of magnitude 
greater than the surface area of the trunk. However, the volume of the pore tree may, at 
most, be one order of magnitude greater than that of the trunk. It should also be noted that 
the above expressions for St and Vt reduce to those appropriate to a single cylindrical pore in 
the limit of rt -»r,^ (the leaf of the tree). Furthermore, the integrals of St(r,) and Vt(r,) over 
all g(rt) recover the total internal surface area and pore volume of the porous sample. 

Each trunk of radius rt is associated with a specific tree-like structure with continuous 
branching to ever decreasing pore radii. The radius and number of pores is a unique function 
of the distance x into the tree. The coordinate x is skewed in that it follows a tortuous path 
through the branches of the tree. Let n(x) represent the number of pores of radius rp at 
location x in a tree of trunk radius rt. An analysis (Simons, 1982) of this pore tree has 
demonstrated that 

n(x)=r?lr*(x) (15) 

and the coordinate x is related to rp by 

drpldx = -rpllt (16) 

The continuous branching model has been used to successfully describe char oxidation 
(Simons, 1979b; Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons, 
1983b & 1984) and the catalytic cracking of benzene by porous iron oxides (Simons et al., 
1986). It was also used to successfully describe sulfur sorption (S02 and H2S) by porous 
calcine (CaO) in the limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984) 
and was later extended to include CaS04 and CaS deposits (Simons and Garman, 1986; 
Simons et al., 1987; Simons, 1988). The subsequent determination of the controlling physical 
parameters led to a new concept for the optimization of the sulfur sorption process (Simons, 
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to 
control the sorbent pore structure. 

10 



m. INTERCONNECTIVITY 

The first step in determining the size distribution of the interconnected pores and the 

distribution of the permeability is to determine the distribution function Gt(rtir\dr   which 
represents the number of pores of radius rp (within size range drp) per unit cross section of an 
arbitrary plane and also contained within a tree whose trunk radius is rt. Consider an infinite 
homogeneous isotropic porous medium and isolate a spherical volume of that medium denoted 
by the radius a. Such a volume is illustrated in Fig. 10. The total number of pores of radius 
rp (within size range drp) intersecting plane AA of area rca2 has previously been defined by 

g(rp)ita
2drp . The pores in plane AA in this size range may also be determined by 

integrating Gr(rf,rpna2dir  over all trees whose trunk intersects the exterior surface of the 
porous sample. Hence it follows that 

g(rp)na2drp = j[Gt(rt,rp)na2drp] g(rt)4na2drt (17) 

where only those trees whose trunk radius is greater than rp may contain a pore of radius rp. 

A solution to Eq. (17) for Gt(rt,rS) will not necessarily be unique. Physical arguments 

will help determine Gt(rt,r^ and help ensure that it is the particular solution we seek. Since 
Nt represents the number of pores of size rp in the tree and the probability of a pore 

intersecting a plane is proportional to its length, it follows that Gf(r/5r) should be 

Figure 10.   Spherical Volume of a Porous Medium 

11 



proportional to the product of Nt and yi, , i.e., proportional to rt
2/rp\  Eq. (17) is identically 

satisfied by a function which differs from rt
2/rp

3 by ln(rp). 

Gt(WP) = 
4^fl2r>(rmi/rD) 

(18) 
max'   p> 

Note that ln^/r^) introduces an integrable singularity at rp=rm« such that Gt(rt,r )dr   is 
finite at rp=rmax . Hence, there is one and only one largest pore for each reference sphere. 

The probability of trees sharing common branches, i.e., the interconnectivity of the 

pore structure is described in Fig. 11. We seek the distribution function  I(rp)dr   which 
represents the number of pores (within size range drp about rp) per unit area of plane AA that 
are connected to both sides of the pore structure through pores at least as large as rp.  A^ is 
defined as the area within plane AA that is open to one side of the porous medium through 
all trees of size r,' (through all pores of size rp* that are at least as large as rp). Subsequently, 

A6 Gt{rt,rp)drp represents the number of pores of size rp (within size range drp) per unit area 
of plane AA that are contained in a tree of size range drt about rt and are also connected to 
the opposite side of the porous medium through all trees denoted by rt'. It follows that the 
distribution function for interconnected pores in plane AA may be obtained by integrating 

Ae Gt{rvr^drp over all trees (rj that are large enough to contain a pore of size rp. Hence, 

I(rp)na2drp = f [A.G^r^dr^gir^na'dr, (19) 

Figure 11.   Interconnectivity of a Porous Medium 

12 



From the above definition of AQ , AQ may be expressed as 

Ae= f[J2nr}na2Gt(rt,rp)drp\ g(rt)2na2drt (20) 

where the primes on the variables of integration have been omitted. Evaluating Eq. (20) 
yields 

A _nfl2ein(rng/^) (21) 
6 2ß 

from which Eq. (19) yields the common branch distribution function. 

7(V = ein(^,.(rp (22) 

It has been deduced that the total number of common branches of size rp in an 
arbitrary plane scales approximately with the total number of pores of that size in that plane. 
Hence, there is a probability of interconnectivity at pore size rp that is logarithmic in pore 
size. Defining this probability as Px(rp) via Eq. (22), 

ein^/r,) (23) 
*P> 4p 

it is apparent that approximately one percent of all pores of all sizes are interconnected 
through larger pores. 

The broad size range associated with the interconnectivity suggests that a very wide 
range of pore sizes control transport and that a complicated mixture of convective and 
diffusive transport persists through all of pore space. While permeability is dominated by the 
largest pores, it is important to determine the level of convection that is occurring in smaller 
pores in order to accurately describe the fine scale transport necessary to assess chemical 
reactions. The ability of this pore structure model to describe bulk permeability, bulk 
diffusivity and the small scale convection responsible for hydrodynamic dispersion 
(Garabedian et al., 1991) are demonstrated before attempting to couple the chemical reactions 
to the macroscopic transport. 

13 



IV.  PERMEABILITY 

Poiseuille's law for laminar flow through a cylindrical pore relates the volume flow 
dP rate Q  to the pore radius rp, the viscosity of the fluid ji, and the pressure gradient — 
dx 

(24) 

whereas the average volume flow rate Q  across the cross sectional- area A of a porous 
medium is used to define the bulk permeability (k) by Darcy's law 

k = ^ (25) 
A (-dpidx) 

To determine the permeability, the pore volume flow rate must be related to the 
average volume flow rate. Convection across plane AA in Fig. 2 will possess contributions 
from two primary sources illustrated in Figs. 2a and 2b. Fig. 2a illustrates the case where the 
convection in plane AA is due solely to the pores that are interconnected in that plane. 
Fig. 2b illustrates the case where the convection in plane AA is due to the smaller pores in 
the pore tree that are interconnected outside of plane AA. This connectivity will translate into 
a slower velocity in the pore crossing plane A A but could be significant because 99% of the 
pores in plane AA are not interconnected in that plane. 

Consider any pore of radius r8 in plane A A of Fig. 2b to be the trunk of a tree. Each 
pore of size rp within the tree possesses the probability Pj(r ) of being interconnected and 

each interconnected pore in the tree will carry volume flow rate Qp(rp) ■ Since there are 
Nsdrp (Eq. 10: Ns=r//rp

4) pores in size range drp within the tree, the total volume flow rate 

Q„(r) through trunk r„ in plane AA becomes 

QJrs) = f Qp(rp) P,(r,) Ns drp 
(26) 

or, forrmax>> r, 

0        __ ettr>(W/rW^ + ^ (27) 

^"y s) 32 tip \ dx) 
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Within this approximation, it is seen that Q„(rs) is identical to the volume flowing 
through the pores that are interconnected within plane AA. i.e., 

Ä.CO -O/OW (28) 

which demonstrates that all volume flow through plane AA in pore size r9 is dominated by the 
interconnectivity of size rs in plane AA and not by the interconnectivity of smaller pores in 
subsequent branches of the pore tree. Simply stated: case 2a dominates case 2b. 

Since all volume flow through plane AA is limited by the interconnectivity of the 

pores in that plane, the total volume flow rate Q is obtained by integrating Eq. (24) over all 
interconnected pores in area A. Hence, 

«-si-g/**^ 
where /(r ) is the "common branch distribution function" given by Eq. (22). The bulk 
permeability (k) is then expressed as 

k=i!rPJ^drP (30) 
8 

Upon integration, Eq. (30) becomes 

(3D 

Equation (31) resembles a dozen other expressions (Dullien, 1979) for permeability 
wherein it is concurred that the bulk permeability is dominated by the largest pores in the 
medium but the unknown value of that permeability is simply replaced by an unknown fiber 
or pore size to the second power. Since the pore size distribution function will be least 
accurate at the extreme end of the size range, i.e. at TmMX , no claim can possibly be made that 
the numerical constants in Eq. (31) are in any way superior to those derived elsewhere. One 
important advantage of the extended pore tree model is that it characterizes the distribution of 
permeability in pore space, a feature that will be important in describing fine scale 
contaminant transport and in-situ remediation. A second advantage is the ability to assess 
statistical errors in the measurement of the permeability as a function of the measurement 
scale size. This exercise is also a good test of the extended pore tree model. 
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Consider a soil sample with the following physical characteristics: 

Conductivity: v =2 cm/hr 
Permeability: k =0.6 Darcy 
Porosity: 9 =50% 
Pore Aspect Ratio: K0=5 
InCw/r^ ß =12 

From Eq. (31), it follows that 

r^ = 300 um 

and subsequently r,^ = 20 A. The size of the smallest pore is not an important parameter for 
this application but may be readily adjusted through a minor variation in the value of ß  (e.g., 
for r,^ of the order of 100 A, ß = 10). The bold assertion made in applying this pore 
structure model to soil is that the l/rp

3 pore size distribution is valid between r,^ and r,^. 

To investigate the role of the measurement scale size on permeability, consider the 
largest pore rmaK contained in the spherical sample of radius "a" as given by Eq. (1). Since 
r,^« in Eq. (31) for the permeability represents the largest pore in the medium, the 
corresponding value of "a" is denoted a,^ and represents the largest sample size for which 
the pore sizes will scale with the dimensions of the sample. From Eqs. (1) and (31) 

a     = ^*-fk (32) 

Each sphere of radius a^« will contain one pore of size r,^.   A 20 x 20 grid of these spheres 
will be characterized by the dimension 40%^ and contain 400 pores of size r,^. Each of 
these pores possess probability P[(rp) of being interconnected. Following Eq. (23), Px(rp) is 
approximately 0.0025 for rp sufficiently close to r^.  Hence, only one of the 400 largest 
pores in this 20 x 20 grid will be interconnected and the error in the measurement of the 
permeability will correspond to the statistical error of 100% associated with that of a sample 
number of unity. Carrying this argument to a 200 x 200 grid of dimension 4008,^ , there will 
be 100 interconnected pores corresponding to a statistical error of 10%. Similarly, a grid of 
scale 4000a,,,« will reduce the error to 1 %. 

Figure 3 illustrates the predicted permeability measurement error associated with the 
soil sample characterized above (a^ =0.3 cm). Note that the errors associated with the 
measurement of permeability become negligible as the measurement scale size approaches 
several meters. This has been confirmed by the infiltration data of Shouse et. al. (1994). The 
measured value of hydraulic conductivity asymptotes to 2 cm/hr at measurement scales 
greater than 4 meters. At smaller measurement scales, the inferred measurement error is 
calculated under the assumption that the asymptote is precisely 2 cm/hr. The excellent 
agreement between the predicted and inferred error supports the extension of the pore tree 
model to describe porous permeable media. 
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V.  BULK GASEOUS DIFFUSION IN PARTIALLY SATURATED MEDIA 

The extended pore tree model is readily adapted to partially saturated media through 
the assumption that all of the water is contained in pore sizes between rmin and r9at while only 
gas is contained between rsat and r^. Since, by Eq. (6), porosity is distributed as ln(rp) in 
pore space, the porosity associated with the air filled pores (6J is approximated by 

0 = ^r^rsJ Q (33) 

where r9at is treated as an independent variable of the saturated pore structure. No gaseous 
diffusion is allowed within rp < r8at.  It is demonstrated that the gas diffusivity scales as l/rsl 

and it is the sensitivity of r8at to the saturated volume that controls the saturated diffusivity. 

The diffusive mass flux in a single pore is given by 

M„(rJ=nDrl 
Px p' 8  P  |     fa 

(34) 

where Dg is the continuum gas diffusion coefficient (Dg=0.2 cm2/s). Just as in the case of 
convection, it must be determined whether the mass flux across plane AA in Fig. 2 is 
determined by the interconnectivity of the smaller pores out of the plane (Fig. 2b) or by only 
those pores that are interconnected in the plane (Fig. 2a). Consider any pore of radius r8 in 
plane AA of Fig. 2b to be the trunk of a tree.   Each pore of size rp within the tree possesses 
the probability Pj(r )   of being interconnected and each interconnected pore in the tree will 

carry the mass flow rate Mp(rp) . Since there are N9drp (Eq. 10: N9=rsVrp
4) pores in size 

range drp within the tree, the total mass flow rate M„(rs) through each and every trunk of 
radius r9 in plane AA becomes 

MAO = / MP(
rp) Pi('p) Ns drp (35) 

Integration of Eq. (35) yields the mass flux (case 2b) for each trunk of radius r8 

(36) M„(r) = «-^—^£ 
4rÄ    I  dx ) 

where a lnfr^/r^ term was eliminated via Eq. (33) and it has been assumed that r5 > > r^. 
This introduces an error for the smaller trees close to r8at but since bulk diffusion (DbuIk ) will 
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be shown to be dominated by the largest trees, the approximation is valid. 

If the mass flux through plane AA is limited by the pores that are interconnected in 

that plane (case 2a), the mass flux is expressed as M (rs) Pj(rs), and it is immediately seen 
that 

MSrs)>Mp{rs)PI{rs) (37) 

i.e., case 2b dominates case 2a. Since the mass diffusion in plane AA is determined by the 
pore interconnectivity of the smaller pores outside of plane AA, the saturation of those 
smaller pores becomes an important element in the bulk gaseous diffusion. 

Since each pore of radius rs in plane AA carries mass flux Mx(rs), the bulk diffusion 
coefficient is obtained by integrating Eq. (36) over all pores in that plane 

«--/■^^Ä-v)*. (38) 

subject to the approximation that the gas is contained in the largest pores (r^ > > rsat). 

D 06 r 

Eliminating rmax via Eq. (31), the bulk diffusivity Dbu]k is expressed in terms of the 
permeability k. 

D      -1D**'fk (40) 
sat 

The bulk diffusivity cannot increase indefinitely with increasing permeability as 
inferred by Eq. (40). In deriving this expression, the mass flux through the interconnected 
branches of the tree was not constrained from exceeding the diffusive capabilities of the trunk 
itself. To correct this potential problem, the limit of DbuIk is determined as the maximum 
diffusive flux (i.e., Dg) in pore r8 integrated over all pores in plane AA. 

JW/' *Dgrl g{ra)drg -^ («) 
rmii 
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D u^t is indicative of existing models for the diffusivity within a completely connected 
pore structure and is illustrated in Figure 4 together with the predicted values of Dbulk for an 
extended range of values of permeability and the saturation radius, r5at. 

Model predictions correspond to the measured values of 9a=0.2 and 6=0.5 from 
Washington et. al., (1994), and the diffusivity data suggest a value of r9at in the range of 
10 urn to 100 |im. An exact comparison of the present theory to the least squared fit obtained 
by Washington et. al., (1994), suggests a value of 30 ^im. This least squared fit also 
demonstrates a permeability dependence of the power 0.53 whereas the model predicts 0.5. 

While the excellent agreement of the model with the data of Washington et. al., (1994) 
does substantiate the present theory, it is apparent that there is a very wide range of possible 
values for Dbua. in partially saturated soils which will depend upon an unknown saturation 
radius. A two order of magnitude decrease in the saturation radius will increase the bulk 
diffusivity by two orders of magnitude and yet the corresponding increase in the air filled 
porosity is, by Eq. (33), only 33%. Hence, field measurements of the unsaturated volume are 
not sufficiently accurate to correlate bulk diffusivities. If bulk diffusivities are to be correlated 
with field data, such measurements should attempt to measure the saturation radius. 
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VI.      HYDRODYNAMIC DISPERSION 

The distribution of velocity (or volume flux) with pore size has been utilized to 

develop a description of hydrodynamic dispersion (Simons, 1996b). The volume flux Q 

through a single pore of radius r subjected to a pressure gradient — is given by Eq. (24). 
dx 

*r}(  dp^ (42) QMmTt[-Z) 
The corresponding fluid velocity v (r J within that single pore is 

w-£(-f) 
and it is evident that the fluid within the larger pores will convect ahead of the fluid in the 
smaller pores inducing an apparent diffusional process commonly referred to as hydrodynamic 
dispersion. 

It has been shown (Eq. 28) that the volume flux QJrJ within all pores of radius rp 

across a fixed plane is limited by the interconnectivity P/O of the pore structure 

far} = far} P{r} (44) 

and the total volume flow rate Q across the cross sectional area A of the pore structure is 
obtained by integrating Eq. (44) over all pores in that cross section. Using the pore size 

distribution function denoted by g(r},   Q becomes 

<?=   ffa^gi^Ad^ 

from which permeability k is defined as 

(45) 
t oo v pr *j v p* —   p 

k = <?H 6r   ^2 
(46) 

A(-dp/dx)     V!6ßJ 

20 



and the mean pore velocity v is defined as the average fluid velocity over the porous area. 

- = _Q_ = k(-dpjdx) (47) 

0,4 0n 

The mean velocity associated with the pore radius rp is denoted by vm(rj and it is the 

variation of vm(rj about v that causes the "diffusion" or hydrodynamic dispersion of a 

specific species about the mean convection velocity v . The aggregate fluid velocity from 
plane to plane must be determined as a function of pore radius. In any given cross sectional 
plane, the fraction P/rJ of the pores were determined to be interconnected and carry fluid 
velocity v (rj while the non-interconnected pores in that size range do not support a 

significant fluid velocity. This was interpreted as an effective fluid velocity v (rJ P/O 
occurring in all pores of radius rp in a given cross sectional plane. An expression for vm(rj 
is utilized which scales with v (r) P/rJ and recovers the mean convection velocity v   in the 
limit of r = r , where r  is the pore size associated with velocity v   and is yet to be 
determined. 

vm(rP _ rp Mr^/rp) 
V -2 

(48) 

The mean velocity associated with pores of size rp will be used to relate a species 
concentration profile in pore space to that in physical space using 

v*(rp = _*_ (49) 
v        vt 

where x is a spatial coordinate in the concentration profile. That profile will contain the 
concentration c   moving with mean velocity  v   and associated with pore size   r    were both 
c   and r    are yet to be determined. The system will lead to the "diffusion" or hydrodynamic 
dispersion of a specific species about the concentration  c   moving with the mean convection 
velocity v . 

From Eq. (48) it is seen that the mean velocity associated with pores of size rp 

possesses a relative maximum at r^^/^/e  as illustrated in Figure 5.  Let T{ and r2 represent 
the two values of rp corresponding to a particular value of vm(rj.  Clearly, the fluid in the 

pore of radius  r^^/y/e  convects ahead of that in the pores of radius TX and r2. Consider flow 
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in a saturated porous medium in which all fluid behind a fixed plane normal to the flow is 
suddenly injected with red dye.  All dyed fluid in pores whose radius is between ^* and r2* 
will translate with velocity equal to or greater than vm* and move to a corresponding location 
x* or greater. The concentration profile c(x)/c0 of the red dye at location x will scale with the 
volume flux whose velocity is greater than vm(x) from within pores whose radius is between 
ri(vm(x))  and r2(vm(x)).   From these arguments, it follows that the normalized concentration 
profile is given by 

c(x) Ic0 = ]Q^ gty drp / /<?„(rp g(rp drp (50) 

where r,(vm(x))  and r2(vm(x)) are related through Eq. (48), 

^Mr««/»*,) = r^lnCr^/^) (51) 

and c(x)/c0 becomes 

c{x)lc0 = {rl-rl[)lri 
2 

max 
(52) 

The concentration profile of the red dye in pore space is readily obtained by solving Eq. (51) 
for r/r^ and r,/^ parametric in terms of rj/r2 between zero and unity. The corresponding 
dye concentration profile in pore space is illustrated in Figure 12. Note that the pore 
containing the largest velocity corresponds to the "front" of the spatial profile (Figure 6) 
where c=0 and the pores containing the lower velocities are at the rear of the spatial profile 
where c tends to unity. 

0.2 0.4 0.6 0.8 
Pore Radius / Maximum Pore Radius 

0.2     0.4 0.6     0.8 
Eta-x/vt 

Figure 12. Concentration in Pore Space Figure 13. Hydrodynamic Dispersivirf 
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Eq. (50) represents the concentration profile of the red dye in pore size space, pore 
velocity space, and physical space. The concentration  c   associated with the mean velocity v 
may be determined from the conservation of the flux of the concentration profile. This is 
expressed as 

max /     ,    v \ 

QA = I\c    Q-(rp> s(rp>A drp (53) 

where the integral is split into integrals over the rt and r2 branches and obtained numerically 
from the profile illustrated in Figure 12. Integration yields 

c/c0 = 0.5 (54) 

It is seen from Figure 12 that there are two pore radii in pore space that satisfy 
Eq. (54).  On the rt branch r    is 0.38332 r,,^ and on the r2 branch we obtain 0.80428 r,^. 
In each case 

(F///^) ln^/Fp = 0.1409 (55) 

and Eqs. (48) and (49) assign a unique value of x to each value of rt and r2. We define 

x  _   'I   h(r„/r,) 
vt     r

2       0.1409 
'max 

and/or the identical expression in r2. The concentration profile may be expressed in physical 
space as a function of r|  corresponding to that in pore space as a function of ^ and r2. The 
concentration profile in physical space is illustrated in Figure 6 where all red dye would be 
located at the location r\ = 1 were it not for the velocity variation within pore size. The 
"front" of the concentration profile has progressed 30% ahead of the mean while the slower 
fluid in the smaller pores has trailed considerable. 

If we were standing at the end of a porous flow tube, the concentration passing our 
location would exhibit a time dependence ( c vs. 1/TJ) illustrated in Figure 7. The faster fluid 
breaks through ahead of the mean flow (c/c0=0,5) while the fluid in the smaller pores is 
delayed. Data of Elrich, et al., (1966), as reported by Brusseau and Rao (1989), are 
illustrated in Fig. 8 and support the current theory of hydrodynamic dispersion. While the 
long "tail" of the concentration profile is generally attributed to nonequilibrium, the current 
pore structure model attributes it to the wide pore size distribution occurring in soil. The 
narrow pore size distributions occurring in laboratory "soil" will yield a much narrower 
concentration profile, i.e., less hydrodynamic dispersion. 
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The local value of the dispersivity required for the concentration profile to be 
compatible with the diffusion equation reflects the virtue of expressing hydrodynamic 
dispersion as a Fickian process. The hydrodynamic dispersion (Dh in length2/time) normalized 
by the mean velocity v   is the dispersivity X. The dispersivity normalized by the mean 
convection distance v t is expressed in terms of the concentration profile via 

A =  (1-T))3C/6TI (57) 

vt &cjdr\2 

and illustrated in Figure 13.   Figure 13 illustrates that neither X nor X/vf is constant, i.e., 
the concentration profile could never be described by a Fickian process. Future research will 
be directed toward using this analytic pore structure/ pore transport model to help derive an 
analytic expression for hydrodynamic dispersion that replaces the Fickian process in the 
transport equations. 
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VH.  COUPLING SUBSCALE REACTIONS TO MACROSCOPIC TRANSPORT 

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has 
utilized the interconnectivity of the pores to determine the distribution of the convection 
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the 
pore structure which does not contribute significantly to the bulk permeability but in which 
convection dominates diffusion. It is the balance of the sub-scale convection with the small 
scale diffusion that will control contaminant transport and in-situ remediation. The size 
distribution of the pores and grains, and the variations in fluid velocity within and between 
pores of different sizes is critical to interfacing the transport processes. A methodology is 
developed to couple subscale diffusion, convection and chemical reactions to the macroscopic 
transport in order to accurately describe contaminant transport and in-situ remediation in 
Ground Water Simulation codes. 

A typical species transport equation in permeable soil is of the form: 

d£.+fd£=Dkl±+£K (58) 
dt       dx       * dx2      M 

where c is the local species concentration, v is the mean convection velocity as determined 
by the local pressure gradient and permeability k, and Dh is the hydrodynamic dispersion. 
The dcf dt  term is the true unsteady term and the source and/or sink of species c due to 

chemical and/or physical processes within the subscale pore structure is written as cMJM 

where M/M represents a bulk rate (1/t) of production or consumption. The bulk rate M/M 
will be related to gradients of c on length scales of order millimeters within the subscale pore 
structure and cannot be expressed in terms of the dcjdx of the macroscopic transport grid. 

To describe the subscale chemical reactions and transport, a "grain" of soil of radius 
ag is isolated from the rest of the medium. The grain size will be chosen sufficiently small 
that molecular diffusion and coupled chemical reactions will dominate the subscale transport. 
The pore tree was developed (Simons, 1982, 1983a, 1988) to treat coupled chemical reactions 
and molecular diffusion within immobile porous grains. A reactant species will diffuse into 
the pores and react on the walls of the pore. The chemical reaction on the walls of the pore 
establishes a species gradient which is greater than c/ag and accelerates the molecular 
diffusion. The effective molecular diffusion coefficient is the square root of the product of the 

molecular diffusivity and the chemical rate constant. The solution for M in this limit scales as 
ag

2 because transport is limited by diffusion across the surface area ag
2 while the species 

gradient is independent of ag. The particular form of the solution for contaminant transport 
and soil remediation will vary with the number of reactions and kinetic mechanisms but the 

fundamentals of the problem depict that M will scale as ag
2 in this diffusive limit. 

As the grain size is reduced, the diffusive abilities of the grain are able to keep up 
with the kinetics of the chemical reactions. The species concentration gradient becomes small 
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compared to c/ag and the species reaction rate scales with the volume of the reactant. In this 

"kinetic limit," Af will scale as ag
3.   Since the local mass of the reactant species M also 

scales as a/, it follows that M/M scales as ag° in the kinetic limit and as ag"' in the 
diffusive limit. This behavior is expressed as 

M = /?!       (Kinetic Limit: a < R\ / Rx) (59) 
M 

and 

M    • •     • (60) 
— =1*21 a    (DiffusiveLimit:a>R\/ Rt) 

where it is assumed that Rx and R\ may be rigorously determined for specific kinetic 
processes in soil through direct application of the pore tree/pore transport model. 

The reactant species must be supplied to the edge of the grain at a rate compatible 
with the rate of species consumption within the grain. Convection in the subscale will 
transport the species across the cross section 7iag

2 at a rate depicted by the permeability kg 

which is appropriate to the length scale ag. Since Af is p Qit ag   and Q may be obtained 

from equation (25), M/M becomes 

M = cp(kg/\i)(nag)(-dp/dx) 
M cpQ(4*ag/3) 

where p is the density of the reactant species (gas or liquid phase). The integral for the 
permeability (Eq. 30) is dominated by the largest pores. If r^ is the largest pore in the grain 
and r^ is the largest pore in the soil, kg appropriate to the grain will scale with k, the 
permeability of the soil, via 

k     (r   )2/l+21n(r    lr   )\ 

* r2 
'max 

where it is assumed that i^/ r,^ is roughly half the width of the entire pore distribution, i.e., 
the (1 +21n) term is approximately equal to ß  (Eq. 4). 

The radius (r,^) of largest pore in the grain of radius ag is directly proportional to ag 
just as r,,^ is directly proportional to a^, the radius of the largest grain in which the pore 
size will scale with the dimension of the sample. Hence, equation (62) becomes 
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S. = ¥iUL (63) 
k 2 

"max 

and, using Eq. (32) for a^ , Eq. (63) is rewritten as 

*     516 K^k 

such that the convective limit of MjM follows. 

M _ Q5l3(-dp/dx) 

k        alQW 
-S. =      8    (64) 

a   m R$a     {ConvectiveLimit) (65) 
M      768 (i ß Ä?     * 

The convective limit of M/M does not explicitly depend on the bulk permeability k because 
k is controlled by the largest pores in the soil and cannot distribute the reactants on a scale as 
fine as these small grains. 

These results are illustrated in Figure 9 and indicate that the convective limit increases 
with larger grains while the diffusive limit decreases with increasing grain size. The 
convective and diffusive limits are equal at ag = a^ 

where it is apparent that for grains smaller than a«,, the convection cannot keep up with the 
diffusion and for grains larger than a^, the diffusion cannot keep up with the convection. The 

system will attain a natural equilibrium at ag = a^ and the corresponding value of M/M 
becomes 

^ = Smaller Of [(R,^ , ÄJ (67) 
M. 

where it has been noted that the solution at ag = a^ cannot exceed the limit of kinetic control. 

The above expression for the bulk source and/or sink of species c due to chemical 
and/or physical processes within the subscale pore structure is incomplete without specific 

models for Rx and R\. Future research will be directed toward developing a library of such 
models. The most basic processes of contaminant diffusion and adsorption are briefly 
described below. 
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VIE.   IMMOBILE SOLUTIONS: TWO LIMITING CASES 

Vni.l General Approach 

The pore structure model described above has been coupled to a transport model 
(Simons, 1982) that is capable of describing the simultaneous action of diffusive and 
kinetically controlled processes in the immobile region. The pore transport model was 
developed to describe quasi-steady char oxidation in which both adsorption and desorption 
occur simultaneously. This transport model will be adapted to describe the transient 
chemisorption and remediation processes in soil such that we will be able to couple the 
subscale reactions to the macroscopic transport as described above. 

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a 
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by 
g(r)4na2drt  where #(rf) is functionally identical to g(rj. Each trunk of radius rt is 
associated with a specific tree-like structure as illustrated in Fig. 1. A pore structure with 
continuous branching to ever decreasing pore radii is depicted as being attached to a uniform 
trunk of radius rt. The radius and number of pores is a unique function of the distance x into 
the tree. The coordinate x is skewed in that it follows a tortuous path through the branches of 
the tree. Let n(x) represent the number of pores of radius rp at location x in a tree of trunk 
radius rt. An analysis (Simons, 1982) of this pore tree has demonstrated that 

n(x)=r?/rfa) (68) 

and the coordinate x is related to rp and the length of the tree trunk lt by 

drjdx=-rjlt (69) 

When this porous structure is placed in an environment with a reactive gas, the 
reactive gas will diffuse into the pore tree and react with the material that constitutes the 
walls of the pore. The diffusion of the reactive gas through n pores of radius rp is balanced by 
the continuous reaction of the gas at the walls of the pore. We write 

K»pA«*iH,,7w <?o) 

where c is the mass fraction of the reactant gas, Dg is the self diffusion coefficient of the 
reactant species, pg is the combined density of all gases in the pore, pg is the combined 
pressure (in atmospheres) of all gases in the pore, and k, is the rate constant (g/s/cm2/atm) for 
a continuous first order reaction which is a function of particle temperature alone. 
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The total reaction rate of the pore tree, M% , is related to the gradient of c at x=0 by 

.2 dc 
dx 

Mr-9gDgnr^X (71) 

However, to obtain the value of dc/dx at x=0, Eq. (70) must be integrated subject to the 
boundary conditions that c=c0 at x=0 (rp =rt) and dc/dx=0 at x=Xt (rp =rmin). The total 

reaction rate of the porous particle is obtained by integrating Mt over all trees 

MT= f Mt4*a2g(r)drt 
(72) 

The pore tree model has been used to successfully describe char oxidation 
(Simons, 1979b; Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons, 
1983b & 1984) and the catalytic cracking of benzene by porous iron oxides (Simons et al., 
1986). It was also used to successfully describe sulfur sorption (S02 and H2S) by porous 
calcine (CaO) in the limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984) 
and was later extended to include CaS04 and CaS deposits (Simons and Garman, 1986; 
Simons et al., 1987; Simons, 1988). The subsequent determination of the controlling physical 
parameters led to a new concept for the optimization of the sulfur sorption process (Simons, 
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to 
control the sorbent pore structure. This transport model will be adapted to describe the 
transient chemisorption and remediation processes in soil such that we will be able to couple 
the subscale reactions to the macroscopic transport as described above. 

Vm.2 Contaminant Adsorption in Saturated Media 

Consider a contaminant in a completely saturated medium. The contaminant will 
diffuse into the pore structure (Figure 1) as described by Eq. (70). Assume that the diffusion 
is rate limiting and the kinetic term (adsorption rate) in Eq. (70) is relatively fast. Within this 
idealization, the walls of the pores between x=0 and x=xc(t) will be completely contaminated 
while the walls of the pores for x > xc(t) will not be contaminated. All of the reaction is 
assumed to occur at (at and around) xc(t) where xc(t) expands throughout the entire pore tree 
as time approaches infinity. The first integral of Eq. (70) between x=0 and x=xc(t) becomes 

npLDL*r^ = -Mt(xc) (73) 

i 

dx 

where pL denotes the liquid density, DL denotes the contaminant diffusion coefficient and 

Mt(xc) denotes the net mass flux of the contaminant into the pore tree as a function of time. 

29 



Using n(x) and drp/dx defined above, Eq. (73) may be integrated subject to the 
boundary condition that c=c0 at x=0 (rp=rt) and c=0 at x=xc (rp=rc). The contaminant 
concentration in the liquid within the pore structure becomes 

c ln(r lr ) 
c =   °    K P' 

c> (74) 
ln(rf/rc) 

and the net mass flux of the contaminant into the pore tree is given by 

MAxc) = -Z- ^-^- (75) 
/, ß 

where the In (rf/rc) term has been replaced with ß (Eq. 4). 

The behavior of Mt(xc) near complete contaminant adsorption (for rc near r,^ is 
incorrect and an exact solution to Eq. (70) is required to precisely simulate this limit. 
However, Eq. (75) may be modified to more closely simulate the mass flux in the limit of 
complete contaminant adsorption. If the walls of the pore tree adsorb contaminant at the rate 
depicted by Eq. (75), the reaction will proceed until the entire surface area St of the pore tree 
is coated with contaminant. Denoting the maximum surface contaminant adsorption level as 

aw (mass per unit area), the characteristic time x over which Eq. (75) is valid is awSt/Mt. 
Using Eq. (13) for the surface area St of the pore tree, x becomes 

x = 
2<V,2ß (76) 

and Mt(xc) is rewritten as 

The total adsorption rate of the porous grain is obtained by integrating Mt over all 
trees as in Eq. (72) above. At late time, the integral is dominated by the largest pore trees in 
the grain. The radius of the largest tree trunk is related to the grain size by equation (1) 
and the total adsorption rate of the porous grain is see to be 

.J«0coDLpLag 

ß2 
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(80) 

As contaminant adsorption nears completion, the total mass adsorbed approaches the 
product of the maximum surface contaminant adsorption level aw (mass per unit area) and the 
total internal surface area. Hence 

M „ 8*e°"flg (79) 

and the immobile solution for Ml M becomes 

M _9c0DLpLrmia    RA 

M       8ßo a„2        al " r "w   g g 

where 

R   -9CoDlPir^ (81) 
4 8ßow 

and the coupled mobile/immobile solution is developed as described in Section VII 

I =(7^)1/3 (82) 

where the viscosity |X in R^ reflects the properties of the liquid in the saturated medium. 

One feature of the immobile solution is immediately obvious: M/ M scales as l/a^ 
instead of l/ag as determined for the coupled reaction/diffusive systems appropriate to 
combustion applications. This occurs because the late time concentration gradient within the 
grain is c^ and introduces an additional l/ag to the scaling relation. It is emphasized that 
Eq. (80) is valid only at late time as the contaminant adsorption reaches the total mass 

adsorption limit. At early time the integral for M is dominated by the smallest trees, the 

corresponding concentration gradient is much greater than cjag and M is r^/r^ greater than 
Eq. (80). The early time solution then scales as l/ag but represents the adsorption rate only at 
extremely low fractions of the total mass adsorption limit. This clearly indicates that a 
complete immobile model for this process will involve a numerical subroutine rather than a 
simple analytic expression. While such a model is quite tractable and would be coupled to the 
mobile solution as previously described, it is beyond the scope of the current study. 

31 



Vm.3 Contaminant Adsorption in Unsaturated Media 

Consider a contaminated gas in a completely unsaturated medium. The contaminant 
will diffuse into and deposit onto the walls of the pores in exactly the same way as described 
for the saturated case. Within the approximation that the kinetics of the adsorption are fast 
with respect to the diffusion, the immobile solution is given by Eq. (80) with the gas density 
pg replacing the liquid density pL and the gas phase contaminant diffusion coefficient Dg 

replacing the liquid phase contaminant diffusion coefficient DL . The immobile solution is 
written as 

* = A (83) 
M    a* 

where 

9 c D p r . 
/L =      °   *H« "fr (84) 
* 8ßow 

and the coupled mobile/immobile solution is 

|=(^^)1/3 (85) 

where the viscosity u in ^ now reflects the properties of the gas in the unsaturated medium. 

It is again emphasized that Eq. (85) is valid only at late time as the contaminant 
adsorption reaches the total mass adsorption limit and, just as in the saturated case, a 
complete model for this time dependent process will involve a numerical subroutine rather 
than a simple analytic expression. However, the analytic form of the solution appropriate to 
late time offers a relatively simple expression to couple into the Ground Water Simulation 
codes for the purpose of testing this method of coupling the mobile and immobile regions. 
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EX.  SUMMARY 

The pore tree model has been extended to describe the permeable pore structure which 
characterizes the subsurface transport of gas and water in soil, the dispersion of contaminants, 
and the in-situ remediation of contaminated sites. The random nature of the pore structure, 
which formed the basis of the statistical derivation of the pore tree, is applied to porous soil 
and sand. The interconnectivity of the pore structure is obtained via a statistical determination 
of the "branches" that are common to several trees to allow convection and bulk diffusion 
through the large scale (mobile) structure in addition to diffusion and coupled chemical 
reactions within the smaller scale (immobile) structure. The statistical analysis reported above 
has determined that the probability of pore interconnectivity extends across the entire pore 
size range, with a slight increase in the probability accompanying a decreasing pore size. 
While permeability is dominated by the largest pores, it is also important to establish the level 
of convection and diffusion that is occurring at the intermediate scales in order to accurately 
relate large scale bulk transport, intermediate scale convection, small scale diffusion and 
coupled chemical reactions. 

The permeability across a given plane is limited by the largest pores that are 
interconnected in that plane. The statistical analysis has determined that approximately one 
quarter of one percent of all large pores are interconnected. This establishes a very coarse 
grid for the permeability which leads to measurement scale size errors. The extended pore 
tree model has successfully explained the measurement errors in the permeability of soil due 
to the measurement scale size (Shouse, et.al., 1994) which has indirectly confirmed the low 
probability of the interconnectivity. 

The bulk gaseous diffusivity across a given plane is shown to be limited by the 
interconnectivity of the smaller branches outside of that plane. These small pores may be 
saturated, resulting in a strong dependence of the diffusivity on the radius of the saturated 
pore. A comparison of the present theory to the diffusivity data of Washington et. al., (1994) 
suggests a saturation radius of 30 p.m. While the excellent agreement with the data does 
substantiate the present theory, the diffusivity in partially saturated soil is very sensitive to an 
unknown saturation radius. If bulk diffusivities are to be correlated with field data, such 
measurements should attempt to measure the saturation radius. 

The permeability and the bulk diffusivity have tested two extreme limits of the pore 
structure and pore interconnectivity concepts. Permeability is limited by the in plane 
interconnectivity (Fig. 2a) and bulk gaseous diffusion is limited by the out of plane (Fig. 2b) 
interconnectivity. Permeability is limited by the large pore interconnectivity and bulk diffusion 
is limited by the interconnectivity of the smaller pores. The apparent success of these 
concepts over a very broad pore size range suggests that the extended pore tree model may be 
used to develop the subscale convection necessary to couple the mobile and immobile regions. 

Since hydrodynamic dispersion is generated by the fluid velocity differences between 
the smaller, convection dominated pores (Garabedian et al., 1991), determination of the 
hydrodynamic dispersion in a homogeneous field has been used (Simons, 1996b) to test the 
pore interconnectivity/pore structure concepts. Data of Elrich, et al., (1966), as reported by 
Brusseau and Rao (1989), support the current theory of hydrodynamic dispersion. While the 
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long "tail" of the concentration profile is generally attributed to nonequilibrium, the current 
pore structure model attributes it to the wide pore size distribution occurring in soil. The 
narrow pore size distributions occurring in laboratory "soil" will yield a much narrower 
concentration profile, i.e., less hydrodynamic dispersion. Future research will be directed 
toward 1), evaluating the hydrodynamic dispersion as a function of pore size range in the soil 
sample and 2), using this analytic pore structure/ pore transport model to help derive an 
analytic expression for hydrodynamic dispersion that replaces the Fickian process in the 
transport equations. 

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has 
utilized the interconnectivity of the pores to determine the distribution of the convection 
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the 
pore structure which does not contribute significantly to the bulk permeability but in which 
convection dominates diffusion. It is the balance of the sub-scale convection with the small 
scale diffusion that will control contaminant transport and in-situ remediation. The size 
distribution of the pores and grains, and the variations in fluid velocity within and between 
pores of different sizes is critical to interfacing the transport processes. A methodology has 
been developed to couple subscale diffusion, convection and chemical reactions to the 
macroscopic transport in order to accurately describe contaminant transport and in-situ 
remediation in Ground Water Simulation codes. The fundamental approach to this application 
was described in Section VII and two specific examples appropriate to limiting cases of 
subscale transport were developed in Section VIII. Future research will be directed toward 
developing a library of models for chemical/diffusive processes in the immobile region such 
that they may be coupled to the mobile region via the technique derived above. Such models 
will provide Ground Water Simulation Codes with physically realistic submodels for 
contaminant transport and remediation studies that can be used to scale data from the 
laboratory to the field and from one field site to another. 

i 
34 



X. REFERENCES 

Brusseau, M.L. and Rao, P.S.C. (1989), "Sorption Nonideality During Organic Contaminant 
Transport in Porous Media," Critical Reviews in Environmental Control, _19, 33-99. 

Dullien, F.A.L. (1979), Porous Media Fluid Transport and Pore Structure, Academic Press, 
pp 160-161. 

Elrich, D.E., Erh, K.T., and Krupp, H.K. (1966), "Applications of Miscible Displacement 
Techniques to Soils," Water Resour. Res. 2, 717. 

Garabedian, S.P., LeBlanc, D.R., Gelhar, L.W. and Celia, M.A. (1991), "Large-Scale 
Natural Gradient Test in Sand and Gravel," Water Resources Research, 27, 911-924. 

Gavalas, G.R. (1980), "A Random Capillary Model with Application to Char Gasification at 
Chemically Controlled Rates," AIChE J., 26, 577. 

Gavalas, G.R. (1981), "An Analysis of Char Combustion Including the Effect of Pore 
Enlargement," Comb. Sei. Tech.. 24. 197. 

Kothandaraman, G. and Simons, G.A. (1984), "Evolution of the Pore Structure in PSOC 140 
Lignite During Pyrolysis," The Combustion Institute, Twentieth Symposium 
(International) on Combustion, Ann Arbor, MI. 

Lewis, P.F. and Simons, G.A. (1979), "Char Gasification:  Part n. Oxidation Results," 
Comb. Sei. Tech., 20, 3 & 4, 117-124. 

Shouse, P.J., Ellsworth, T.R. and Jobes, J.A. (1994), "Steady-State Infiltration as a Function 
of Measurement Scale," Soil Science, 157, 3, 129-136. 

Simons, G.A. and Finson, M.L. (1979), "The Structure of Coal Char:  Part I. Pore 
Branching," Comb. Sei. Tech., 19, 5 & 6, 217-226. 

Simons, G.A. (1979a), "The Structure of Coal Char:  Part H.  Pore Combination," Comb. 
Sei. Tech., 19, 5 & 6, 227-235. 

Simons, G.A. (1979b), "Char Gasification:  Part I. Transport Model," Comb. Sei. Tech., 20, 
3&4, 107-116. 

Simons, G.A. and Rawlins, W.T. (1980), "The Reaction of S02 and H2S with Porous 
Calcined Limestone," Ind. & Eng. Chem., Process Des. & Dev., 19, 565-572. 

Simons, G.A. (1982), "The Pore Tree Structure of Porous Char," The Combustion Institute, 
Nineteenth Symposium (International) on Combustion, Haifa, Israel. 

Simons, G.A. (1983a), "The Role of Pore Structure In Coal Pyrolysis and Gasification," 
(Invited Survey Article) Progress in Energy and Combustion Science, 9, 269. 

Simons, G.A. (1983b), "Coal Pyrolysis I. Pore Evolution Theory," Comb, and Flame, 53, 
83-92. 

Simons, G.A. (1984), "Coal Pyrolysis n. Species Transport Theory," Comb, and Flame, 55, 
181-194. 

Simons, G.A., Garman, A.R., and Boni, A.A. (1984), "High Pressure Sulfur Sorption by 
Limestone," Paper No. 33, Eastern Section of the Combustion Institute, Fall Technical 
Meeting, Clearwater Beach, FL. 

Simons, G.A., Ham, D.O., and Moniz, G.A. (1986),   "Catalytic Cracking of Aromatic 
Hydrocarbons", Physical Sciences Inc. PSI-385/TR-552, DOE/MC/21385-2021. 

Simons, G.A. and Garman, A.R. (1986), "Small Pore Closure and the Deactivation of the 
Limestone Sulfation Reaction," AIChE J., 32, 1491. 

Simons, G.A., Garman, A.R., and Boni, A.A. (1987), "The Kinetic Rate of S02 Sorption by 
CaO," AIChE J., 33, 211. 

35 



Simons, G.A. (1988), "Parameters Limiting Sulfation by CaO," AIChE J., 34, 167. 
Simons, G.A. (1991), "Predictions of CMA Utilization for In-Situ S02 Removal in Utility 

Boilers," International Symposium on Calcium Magnesium Acetate (CMA), 
Northeastern University, Boston, MA, May 14-16. Also: Resources, Conservation and 
Recycling, 7, 161-170, 1992. 

Simons, G.A., Parker, T.E., Moore, J.W., Senior, CA., and Levendis, Y.A. (1992), 
"Combined NOx/SOx Control Using a Single Liquid Injection System," Physical 
Sciences Inc., TR-1169. 

Simons, G.A., (1996a), "Extension of the "Pore tree" Model to Describe Transport in Soil," 
Ground Water, J4, 4, July-August, 683-690. 
Simons, G.A. (1996b), "Application of the "Pore tree" Model to Describe Hydrodynamic 

Dispersion," Submitted for publication, Ground Water. 
Washington, J.W.; Rose, A.W.; Ciolkosz, E.J.; and Dobos, R.R. (1994), "Gaseous Diffusion 

and Permeability in Four Soil Profiles in Central Pennsylvania," Soil Science, 157. 
2, 65-76. 

36 



XI.  NOMENCLATURE 

A arbitrary cross sectional area 
AQ area within A that is connected 
a radius of sphere in a porous medium 
a^ maximum value of a in which pore structure is self similar 
ag radius of arbitrary "grain" of soil 
c species mass fraction (pjpg) 
c mean species concentration 
Dh hydrodynamic dispersion coefficient 
Dg continuum gas phase diffusion coefficient 
DL contaminant diffusion coefficient in the liquid 
Dbuik gas diffusion coefficient in partially saturated porous media 
Diimit gas diffusion coefficient in fully connected porous media 
f(rp) number of pores per unit volume of radius rp 

g (rj number of pores per unit area of radius rp 

Gt number of pores in tree r, and in plane A of radius rp 

7(0 common branch distribution function  I= gPj 
k permeability 
kg permeability of grain ag 

K„ constant relating the pore length to the radius 
lp length of a pore of radius rp 

It length of a tree trunk of radius rt 

M (rj diffusive mass flux in pore of radius rp 

M^irJ diffusive mass flux in tree rp limited by interconnectivity 

MJ M mobile/immobile rate (1/t) 
Nt number of pores in tree rt of radius rp 

n(x) number of branches at location x 
^/(O probability of interconnectivity 
p gas or liquid pressure 

Q convective volume flow rate across cross sectional area A 

<? (rj convective volume flow rate in pore of radius rp 

(?«(rp) convective volume flow rate in tree rp limited by interconnectivity 

Rj mobile/immobile rate constants 
rp radius of a pore 
rt radius of trunk of tree rt 
rc radius of penetration of contaminant adsorption 
r^ maximum pore radius in grain ag 

r9at radius of largest pore that is saturated 
rt largest pore corresponding to vm(rt) 

r2 smallest pore corresponding to vm(rt) 
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St(rt) 
t 
Vt(i\) 

w 
vJrp) 
v 
x 
x. 

specific internal surface area (m2/g) 
surface area of pore tree with trunk radius rt 

time 
volume of pore tree with trunk radius rt 

velocity associated with <?p(0 

mean value of v (r J in interconnected pore space 

mean velocity across area 6A 
axial distance in pore, spatial coordinate 
axial penetration of contaminant adsorption 

Greek 
ß 

e 
ea 
x 
p 
Pc 

pg 

Ps 

PL 

x 

ln(r, max '   ^-min ) 
dimensionless coordinate: Eq (56) 
total porosity of the porous medium 
unsaturated or "air filled" porosity of the medium 
hydrodynamic dispersivity 
viscosity of permeate 
density of gas phase species c 
total density of gas phase 
density of the solid matrix 
density of the liquid 
maximum surface contaminant adsorption level (mass per unit area) 
time constant for complete contaminant adsorption 

Subscripts 
P 
t 
s 
min 
max 

pore 
tree whose trunk reaches outer edge of medium 
tree whose trunk is in arbitrary plane 
minimum size 
maximum size 

L 
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